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Our wicked challenges
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Soil is at the nexus of our challenges underpinning many ecosystem services
including supporting yields and mitigating climate warming
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From Soil C “sequestration” to soil C stewardship

Janzen, 2024

A proposed definition of ‘soil carbon stewardship’, showing noteworthy emphases
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Addressing the soil C dilemma:
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How does soil organic matter form, turn over and persist?
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Not all soil organic matter is
made equal:
We developed and apply the
POM versus MAOM
study framework
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Merging conceptual with procedural definition of POM and MAOM
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Increasing throughput of soi
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Artificial Intelligence techniques to estimate C and
fractions at large scale (cotrufo et al., 2019, Lugato et al., 2021)

Use high-throughput soil C analytical approaches,
such as FTIR (Ramirez et al.,2021)
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Production of isotopically labeled plant, exudate and pyOM

r

Soong et al., JoVE, 2013



What have we learned?

POM and MAOM
formation and stabilization

Mechanisms and controls
of formation & stabilization




Soil Organic Matter forms from both structural and soluble inputs
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Two pathways of SOM formation
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The two pathways confirmed from mechanistic laboratory and field
incubations in top and subsoil
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Root exudates and other soluble inputs contributes most to MAOM
Formation efficiencies are typically around 20-30%, and increase significantly with depths



Microbes are central drivers
to the formation, turnover and stabilization of SOM

Rocci et al., 2024
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Mycorrhizas drive the relative abundance
and C:N of MAOM and POM
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Edaphic controls on microbial activity
driving soil C dynamics
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POM and MAOM
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Carbon Stock distribution differs
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The distribution of SOM between POM and MAOM
may affect soil N dynamics
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Using the POM vs MAOM framework

Management Solutions




Intensification and
Diversification of
ADDRESSING Dryland Cropping
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Cropping intensification and diversification with the addition of @
legume cash crop increased SOC and cumulative crop production
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Can using perennial crops increase soil C?

Kernza or Wheat or
IWG Annual Crop

2 : Where model lies within the dashed lines,
* No differences in bulk or MAOM-C there are no differences by vegetation
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» Solid line = model values
* Dashed line = 95% Confidence Interval of data
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CONTROL ” DEEPER ROOTS ¥ HIGHER ROOT:SHOOT

DEEPENING ROOT INPUTS:
POTENTIAL SOIL CARBON ACCRUAL
FROM BREEDING FOR DEEPER
ROOTED MAIZE

Shifting root inputs to deeper layer or = | B | )
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S0C, . - S
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Applying current understanding to
Inform grazing management
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Presenter Notes
Presentation Notes
part of the reason why our understanding of how grazing influences SOC is limited is because much of it has been done in experimental settings
while experiments can be great and we need them, they’re not always representative of actual grazing management used by ranchers, and certainly not at the same scale 
Which is why having the opportunity to work with you all on this project is such an incredible opportunity for us
Because collecting these data and learning from actual ranches is crucial to our work and making sure that our science doesn’t happen in a vacuum


Transferring this knowledge to a useful tool for
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MEMS Ecosystem model: modelling the measurable
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MEMS 2.0
calibrated and validated on US grasslands
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MEMS 2.14
developing crops and management
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MEMS 2.34

developing grazing management
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MEMS 2.34
developing grazing management
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Adaptive management confirmed to have potentials to increase soil Cin both POM and MAOM in the
Southeast US: Optimizing frequency and intensity of grazing can modify SOC accrual
Santos et al., 2024
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