Wehner

Breeding for priming triggered leaf rust resistance in barley

Gwendolin Wehner1*, Karolin Pohl2, Nina Bziuk2, Adam Schikora2, Kornelia Smalla2 and Frank Ordon1
1 Julius Kühn-Institut (JKI), Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484
Quedlinburg, Germany
2 Julius Kühn-Institut (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig,
Germany

Leaf rust (Puccinia hordei) is one of the most important diseases of barley (Hordeum vulgare L.) leading to yield losses
up to 60%. Resistance genes Rph1-Rph25 are known in barley but most of these have been overcome meanwhile.

But, priming of barley may offer an opportunity to enhance resistance to P. hordei. By quorum sensing of bacterial
communities N-acyl homoserine-lacton (AHL) is produced, which is known to induce systemic resistance. The present
study therefore aims at the detection of genomic regions involved in priming capacity of barley which is one of the
most important cereal crops, worldwide.

A diverse set of 200 spring barley accessions were treated with bacteria, i.e. repaired Ensifer meliloti natural mutant
expR+ch overexpressing AHL and transformed E. meliloti carrying the lactonase gene attM from Agrobacterium
tumefaciens which inhibits AHL production. After three bacterial inoculations, plants were infected with P. hordei strain
I-80 at the three leaves stage. 12 days after infection scoring of the leaf area diseased and the infection type was
conducted. Results of two experimental replications revealed significant effects (p<0.001) of the bacterial treatment
indicating a positive effect of priming on P. hordei resistance. Based on the observed phenotypic differences and
23,417 filtered SNPs derived from the Illumina 9k iSelect chip and genotyping by sequencing, 21 quantitative trait loci
(QTL) involved in priming-efficiency were identified by genome wide association studies. Experiments will be repeated
once to validate QTL regions and develop molecular markers facilitating marker assisted selection of priming efficient
accessions in barley breeding.

The authors thank the German Federal Ministry of Education and Research (BMBF) for funding this project (FKZ
031B0196C).