Morel
Plant-plant interactions modify disease susceptibility

Aurélie DUCASSE
Coline TEMPLE
Elsa BALLINI
Jean-Benoit MOREL*

1 BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier
Campus International de Baillarguet TA A - 54 / K 34398 Montpellier cedex 5

Many reports indicate that crop mixtures (either inter or intra-specific), reduce the incidence of microbial diseases. Besides mechanisms operating at the field level like inoculum dilution, there is recent evidence that plant-centered mechanisms with identified plant molecules and pathways are also involved. For instance, molecules produced by one plant, either above or below ground, can directly inhibit pathogens or indirectly trigger resistance through the induction of the plant immune system in neighboring plants. Alternatively, competition for resources like light or nutrients may indirectly modify the expression of the plant immune system (Morel and Zhu, 2018). We evaluated under controlled conditions and in the field if such plant-centered mechanisms were operating, using inter-specific (rice and maize, wheat and pea) and intra-specific mixtures (rice and rice, wheat and wheat). Our result show that the physiology (as measured by gene expression analysis) of a given plant can be modified by the identity of the neighboring plants. This modification can lead to measurable changes in disease susceptibility. We have evidence that several mechanisms are operating: some involve molecules produced by roots exudates while in other cases the trade-off between growth and defense may be involved. We further explored these plant-plant interactions in intra-specific mixtures. We could identify good neighbors that hold new promises for crop protection in intra-specific mixtures.


Flis
Using 4R Nutrient Stewardship to Optimize Soil and Plant Health

Sally Flis
Director of Agronomy at The Fertilizer Institute (TFI) Washington D.C., USA

The 4R Nutrient Stewardship Framework helps farmers achieve cropping system goals such as increased production, increased farmer profitability, enhanced environmental protection and improved sustainability, through consideration of the right source of fertilizer applied at the right rate, at the right time and in the right place. Making the most effective and efficient 4R decisions requires the farmer and their trusted consultants to examine soil physical, chemical, and biological characteristics, site characteristics like waterways and slope of a field, crop system goals and practices, and weather. Understanding how 4R decisions fit in a whole crop production system will optimize the economic, environmental, and social outcomes for a farmer.